A Finite Difference Method for Piecewise Deterministic Processes with Memory

نویسنده

  • MARIO ANNUNZIATO
چکیده

Abstract. In this paper the numerical approximation of solutions of Liouville-Master Equations for time-dependent distribution functions of Piecewise Deterministic Processes with memory is considered. These equations are linear hyperbolic PDEs with non-constant coefficients, and boundary conditions that depend on integrals over the interior of the integration domain. We construct a finite difference method of the first order, by a combination of the upwind method, for PDEs, and by a direct quadrature, for the boundary condition. We analyse convergence of the numerical solution for distribution functions evolving towards an equilibrium. Numerical results for two problems, whose analytical solutions are known in closed form, illustrate the theoretical finding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A finite difference method for piecewise deterministic Markov processes

An extension of non-deterministic processes driven by the random telegraph signal is introduced in the framework of piecewise deterministic Markov processes [9], including a broader category of random systems. The corresponding Liouville-Master Equation is established and the upwind method is applied to numerical calculation of the distribution function. The convergence of the numerical solutio...

متن کامل

Moment Closure and Finite-Time Blowup for Piecewise Deterministic Markov Processes

We present a variety of results analyzing the behavior of a class of stochastic processes — referred to as Piecewise Deterministic Markov Processes (PDMPs) — on the infinite time interval, and determine general conditions on when the moments of such processes will, or will not, be wellbehaved. We also characterize the types of finite-time blowups that are possible for these processes, and obtai...

متن کامل

PEIECWISE CONSTANT LEVEL SET METHOD BASED FINITE ELEMENT ANALYSIS FOR STRUCTURAL TOPOLOGY OPTIMIZATION USING PHASE FIELD METHOD

In this paper the piecewise level set method is combined with phase field method to solve the shape and topology optimization problem. First, the optimization problem is formed based on piecewise constant level set method then is updated using the energy term of phase field equations. The resulting diffusion equation which updates the level set function and optimization ...

متن کامل

Numerical solution of Convection-Diffusion equations with memory term based on sinc method

‎In this paper‎, ‎we study the numerical solution of Convection-Diffusion equation with a memory term subject to initial boundary value conditions‎. ‎Finite difference method in combination with product trapezoidal integration rule is used to discretize the equation in time and sinc collocation method is employed in space‎. ‎The accuracy and error analysis of the method are discussed‎. ‎Numeric...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006